Precise Wind Power Prediction with SVM Ensemble Regression
نویسندگان
چکیده
In this work, we propose the use of support vector regression ensembles for wind power prediction. Ensemble methods often yield better classification and regression accuracy than classical machine learning algorithms and reduce the computational cost. In the field of wind power generation, the integration into the smart grid is only possible with a precise forecast computed in a reasonable time. Our support vector regression ensemble approach uses bootstrap aggregating (bagging), which can easily be parallelized. A set of weak predictors is trained and then combined to an ensemble by aggregating the predictions. We investigate how to choose and train the individual predictors and how to weight them best in the prediction ensemble. In a comprehensive experimental analysis, we show that our SVR ensemble approach renders significantly better forecast results than state-of-the-art predictors.
منابع مشابه
Application of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملWind Power Prediction with Machine Learning Ensembles
For a sustainable integration of wind power into the electricity grid, precise and robust predictions are required. With increasing installed capacity and changing energy markets, there is a growing demand for short-term predictions. Machine learning methods can be used as a purely data-driven, spatio-temporal prediction model that yields better results than traditional physical models based on...
متن کاملFacial Landmark Detection using Ensemble of Cascaded Regressions
This paper presents an ensemble of regressions approach for estimation of the positions of facial landmarks in frontal and near-frontal face images. Our approach learns three different cascades of regressors and fuses their predictions into one final precise estimate using Gradient Boosting Regression Trees (GBRT). The cascaded model starts from an approximate estimate of the landmark positions...
متن کاملWind Power Prediction with Cross-Correlation Weighted Nearest Neighbors
A precise wind power prediction is important for the integration of wind energy into the power grid. Besides numerical weather models for short-term predictions, there is a trend towards the development of statistical data-driven models that can outperform the classical forecast models [1]. In this paper, we improve a statistical prediction model proposed by Kramer and Gieseke [5], by employing...
متن کاملSkill forecasting from different wind power ensemble prediction methods
This paper presents an investigation on alternative approaches to the providing of uncertainty estimates associated to point predictions of wind generation. Focus is given to skill forecasts in the form of prediction risk indices, aiming at giving a comprehensive signal on the expected level of forecast uncertainty. Ensemble predictions of wind generation are used as input. A proposal for the d...
متن کامل